quarta-feira, 26 de dezembro de 2018



  +    
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

  +    
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


   +    
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

 .  +    
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





   +    
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



a lei de PLANCK E OSCILADOR LC produz efeitos sobre  UM SISTEMA DE MATERIAIS DIAMAGNÉTICO, PARAMAGNÉTICO, E FERROMAGNÉTICO SE TEM VARIAÇÕES DE ESPALHAMENTO DE PARTÍCILAS, FLUXOS QUÂNTICO E ESTADO E MOMENTUM QUÃNTICO, ESPALHAMENTO DE ENERGIAS, RADIAÇÕES, TEMPERATURA E ENTROPIAS, DIFRAÇÕES, INTERAÇÕES, TRANSFORMAÇÕES, DECAIMENTOS, CONDUTIVIDADES, E OUTROS.



 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].



Radiação de corpo negro
Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
A tabela seguinte descreve as variáveis e unidades utilizadas:
VariávelDescriçãoUnidade
radiância espectralJ•s−1•m−2•sr−1•Hz−1
frequênciahertz
temperatura do corpo negrokelvin
constante de Planckjoule / hertz
velocidade da luz no vácuometros / segundo
número de Eulersem dimensão
constante de Boltzmannjoule / kelvin
O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
Pode-se escrever a Lei de Planck em termos de energia espectral:
A energia espectral também pode ser expressa como função do comprimento de onda:
Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação  [1]:
 .
Planck assumiu a essa quantização, cinco anos depois de Albert Einstein ter sugerido a existência de fótons como um meio de explicar o efeito fotoelétrico. Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiança tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.



Curvas de tensão em um oscilador LC
Um oscilador LC é composto por um indutor e um capacitor em paralelo. Seu funcionamento se baseia no armazenamento de energia em forma de diferença de cargas elétricas no capacitor e em forma de campo magnético no indutor.

Funcionamento do circuito[editar | editar código-fonte]

O capacitor, em um tempo igual a zero, oferece uma impedância próxima a zero ohms, o que permite fluir uma grande intensidade de corrente elétrica através do qual vai diminuindo até que suas placas tenham cargas elétricas positivas e negativas como permite o tamanho do mesmo e a permissividade elétrica do isolante que tem entre as placas do capacitor.
Num instante o capacitor funciona como um isolante, já que não pode permitir a passagem de corrente, e se cria um campo elétrico entre as duas placas, que cria a força necessária para manter armazenadas as cargas elétricas positivas e negativas, em suas respectivas placas.
Por outra parte, num tempo igual a zero o indutor possui uma impedância quase infinita, que não permite o fluxo de corrente através dele e, a medida que passa o tempo, a corrente começa a fluir, criando-se então um campo magnético proporcional a magnitude da mesma. Passado um tempo, o indutor atua praticamente como um condutor elétrico, pelo que a sua impedância tende a zero.
Por estar o capacitor e o indutor em paralelo, a energia armazenada pelo campo elétrico do capacitor (em formas de cargas eletrostáticas), é absorvida pelo indutor, que armazena em seu campo magnético, porém a continuação é absorvida e armazenada pelo capacitor, para novamente ser absorvido pelo indutor, e assim sucessivamente. Isto cria um vai e vem de corrente entre o capacitor e o indutor. Este vai e vem constitue uma oscilação eletromagnética, no qual o campo elétrico e o magnético são perpendiculares entre si, o que significa que nunca existe os dois ao mesmo tempo, já que quando está o campo elétrico no capacitor existe campo magnético no indutor, e vice-versa.

Frequência de oscilação[editar | editar código-fonte]

A característica deste tipo de circuito, também conhecido como circuito tanque LC, é que a velocidade com que flui e regressa a corrente desde o capacitor e o indutor ou vice-versa, se produz com uma frequência (F) própria, denominada frequência de ressonância, que depende dos valores do capacitor (C), e vem dada pela seguinte fórmula:
onde:
 se mede em Hertz em Farads e  em Henrys.